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1 Model Preliminaries

We analyze a market with M HMO plans, H hospitals, and N individuals. Each HMO k and
hospital j possesses a vector of characteristics θMk and θHj respectively. Individuals are divided

among R different demographic groups, where group r makes up share σRr of the population and
values HMO and hospital characteristics according to the coefficients βMr and βHr respectively. We
assume any hospital can contract with any number of different HMOs, and similarly any HMO can
contract with any number of hospitals. Denote by Mj the set of HMOs of which that hospital j is a
member; similarly, let Hk represent the set of hospitals that are in HMO k’s network of providers.

Note that either the set {Mj}j∈H or {Hk}k∈M can uniquely define a network or market structure.
We choose to represent a network structure by the binary HxM matrix χ, where χ(j,k) = 1 iff hospital
j is in HMO k’s plan, and χ(j,k) = 0 otherwise.

1.1 Individual Choice

We assume every individual will be hospitalized with probability γ. If sick, in order to use a
particular hospital j ∈ H, an individual needs to have enrolled in an HMO plan k with j ∈ Hk.
Each HMO k charges a one-time premium pk. There is also an outside option which provides the
individual with necessary health care in the case of illness – the utility of this option is normalized
to 0.

Let individual i be part of demographic group r. We define an individual i’s utility from using
hospital j as

uHij = θHj β
H
r + ωij (1)

where ω is distributed iid Type I extreme value. From this formulation, we can define an individual
i’s utility from enrolling in a given HMO k that has a set of hospitals Hk:

1

uMik = θMk β
M
r − αpk + γ

ln(
∑
j∈Hk

exp(θHj β
H
r ))

+ εim

where ε is also distributed iid Type I extreme value.
With this linear utility function and distribution on error terms, we can calculate the the

(expected)2 share of the population that chooses HMO k given any particular network structure χ

1Note Eω(maxh∈Hm(uH
ij )) = ln(

∑
j∈Hm

exp(θHj β
H
r ))

2For the purposes of discussion, we will assume all references to the shares determined by consumer choice are in
fact expectations even when not explicitly staged – with a small N , the formulas given by the logit formulas will not
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as follows:

σMk =
∑
r∈R

σRr
exp(θMk β

M
r − αpk + γ ln(

∑
j∈Hk

exp(θHj β
H
r )))

1 +
∑

l∈M (exp(θMl β
M
r − pl + γ ln(

∑
g∈Hk

exp(θHg β
H
r ))))

(2)

=
∑
r∈R

σRr σ̃
M
k,r

We use σ̃Mk,r to represent the share of demographic group r that chooses HMO plan k.
We can go even further, and define the demographic distribution of individuals within each

HMO plan; that is, the share of people who use HMO plan k who are part of demographic group
r:

σ̃Rr,k =
σRr σ̃

M
k,r∑

s∈R σ
R
s σ̃

M
k,s

This allows us now to denote the share of HMO plan k’s customers who actually will be sick and
need to use hospital j ∈ Hk:

σHj,k = γ
∑
r∈R

σ̃Rr,k
exp(θHj β

H
r )∑

l∈Hk
exp(θHl β

H
r )

(3)

Note that σMk is a function of the entire network structure (χ) and premiums charged by all
HMOs (P); also note that σHk is just a function of HMO k’s own hospital network Hk. For the rest
of the exposition, when we use σMk and σHk , we will assume that a particular network structure and
set of premiums is given.

1.2 Hospital and HMO Behavior

In our model we assume each hospital j offers each HMO k a take-it-or-leave-it contract which
specifies a per-patient transfer of Tj,k for each patient of HMO k that hospital j serves. We
represent the set of per-patient transfers offered by all HMOs to each hospital as an HxM matrix
T .

An HMO can reject or accept any contract offered to it. Thus, by accepting or rejecting these
contracts, the HMOs directly determine the healthcare network structure of the market – i.e., which
hospitals belong to which HMO plans. However, since hospitals choose the initial contract offers,
they profoundly influence these eventual choices.

For hospital j, profits are given by the equation

πHj =

(
∑
k∈Mh

NσMk σ
H
j,kTj,k)− cHj (

∑
k∈Mh

NσMk σ
H
j,k)

 (4)

cHj represents the average cost of serving each patient at hospital j. We assume that each
hospital j has a “capacity constraint” Γj , and will face increasing costs if it serves more than Γj

be exact. However, for the purposes of this model, this distinction is irrelevant: given the timing of the model, when
players make their decisions all choices are based on expectations; furthermore, when actually calculating profits, we
will be allowing for “fractions” of people to perform actions. In other words, we are approximating a large population
using a small value of N for notational purposes. Thus, a unit of N can be thought of as a “block” of people, and all
previous definitions can be modified as implied by this interpretation.
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patients. We assume that if hospital j serves x patients, its average costs per patient will be given
by

cHj = c̄Hj + (x− Γj)
φ1x>Γj

where c̄Hj is an hospital specific constant, and φ represents the exponential parameter through
which overflow patients affect average costs if the hospital is over capacity (denoted by the indicator
function 1x>Γj ).

For any HMO k, its profits are calculated as follows:

πMk = NσMk (pk − cMk )−
∑
j∈Hm

Tj,kNσ
M
k σ

H
j,k +

∑
j∈Hk

εj,k (5)

= π̃Mk +
∑
j∈Hk

εj,k

cMk represents the cost that each HMO incurs per patient under its plan; for the purposes of this
model, we normalize this cost to 0 for all HMOs. Note that the profits of an HMO depends is
influenced by the network structure of the industry, which in turn is determined not only by the
set of transfers and premiums HMO k has, but those of its competitors as well.

In the case of asymmetric information, εj,k represents the set of “Hospital-synergies” that a
particular HMO k possesses for hospital j. I.e., ε are values for each hospital-HMO combination
that enter additively into a particular HMO’s profit function for each HMO in which that hospital
is a member. We assume that each HMO knows only its own values of εj,·; hospitals do not know
any of the values of ε. However, all parties have a common prior over the distribution of all ε. For
the purposes of our model, we assume that they are distributed as i.i.d. standard normals.

For this current version of the program, however, there is no asymmetric information. Thus,
ε = 0 ∀ j, k.

2 Timing of Actions

The model proceeds as a multistage game with observable actions between stages. In each stage,
players choose their actions simultaneously. The solution concept is SPNE for the perfect informa-
tion case, Perfect Bayesian Nash Equilibrium for the asymmetric info case.

2.1 Stage 1

Each hospital j ∈ H chooses a set of functions {tj,k}k∈M where tj,k : Z+ → R which specifies a
per-patient payment to hospital j for a given number of HMO k’s patients served by that hospital.
For now we restrict the set of contracts to be linear; specifically, that they be a fixed constant
per-patient payment. I.e., each hospital j ∈ H offers a set of contracts Tj = (Tj,1, . . . , Tj,M ) ∈ Rk+
to the hospitals.

2.2 Stage 2

At this stage each HMO k knows the full set of contracts T = (T1, . . . , TH) offered by all hospitals
to all HMOs; in the asymmetric information case, each HMO knows only its own set of synergies
{εj,k}j∈H . Each HMO k chooses an action χk = (χ1,k, . . . , χH,k) ∈ {0, 1}H ≡ S, where χj,k = 1 iff
HMO k accepts the contract offered by hospital j. Each HMO thus has a strategy space of size
{2H}. Note that the HMOs’ actions at this stage define a network structure χ = (χ1, . . . , χH).
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2.3 Stage 3

Each HMO k chooses a premium pk ∈ R+ that it will charge each consumer that chooses to join
its plan.

2.4 Stage 4

Each individual i of N total consumers chooses to enroll in an HMO plan, with the utility from
choosing HMO k being uMi,k defined in equation 1.1, or chooses to utilize the outside option, thereby
deriving a utility of 0. The HMO choices by consumers thus determines the number of consumers
enrolled in each HMO plan and the number of consumers that are treated at each hospital. HMO
payoffs (πM ) and hospital payoffs (πH) are realized.

3 Equilibrium Conditions

3.1 Perfect Information

A SPNE of this game will consist of a set of transfers offered by hospitals T ∗ = (T ∗1 , . . . , T
∗
H);

HMO strategies {χ1, . . . , χM} defined for all possible values of T ; and a set of induced premiums
p(T, χ) = (p1(T, χ), . . . , pM (T, χ)) for all possible realizations of (T, χ). These all must satisfy the
following conditions:

• pk(T, χ) ∈ arg maxpk π
M
i (T, χ, pk, p−k) ∀ k ∈M, ∀ T, χ

• χk(T ) ∈ arg maxχk
πMi (T, (χk, χ−k)] ∀ k ∈M, ∀ T

• T ∗j ∈ arg maxTj π
H
j ((Tj , T

∗
−j), χ(Tj , T

∗
−j), p) ∀ j ∈ H

3.2 Asymmetric information

A PBNE of this game will consist of a set of transfers offered by hospitals T ∗ = (T ∗1 , . . . , T
∗
H); a set

of beliefs µ∗(T ) = {µ∗1(T ), . . . , µ∗M (T )} over the space of all possible HMO strategies {χ1, . . . , χM}
defined for all possible values of T ; and a set of induced premiums p(T, χ) = (p1(T, χ), . . . , pM (T, χ))
for all possible realizations of (T, χ). These all must satisfy the following conditions:

• pk(T, χ) ∈ arg maxpk π
M
i (T, χ, (pk, p−k)) ∀ k ∈M, ∀ T, χ

• Given εk, χk(T ) ∈ arg maxχk
Eµ∗−j

[πMi (T, (χk, χ−k))] ∀ k ∈M, ∀ T

• µ∗k(χk) = Pr(ε·,k|χk ∈ arg maxχk
Eµ∗−k

[πMk (T, (χk, χ−k)))]) ∀ χk ∈ S, ∀ k ∈M

• T ∗j ∈ arg maxTj Eµ∗ [π
H
j ((Tj , T

∗
−j), χ(Tj , T

∗
−j), p)] ∀ j ∈ H

4 Solving the Model

We describe how an equilibrium is computed for a given set of parameter values by describing how
each stage is computed. We proceed by backward induction – i.e., we describe how demand is
realized given transfers, a network structure and set of premiums; we determine premiums given
a network structure and set of transfers by being able to infer what realized demand will be; we
determine the network structure given transfers by knowing what demand and premiums will be;
and finally, we can figure out transfers since we can calculate for any set of transfers, what the
implied network, premiums, and demand will be.
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4.1 Stage 4: Individual Demand

At this stage, a set of premiums P , transfers T , and a network structure χ will be specified. Thus,
consumer demand will be identified using equations 2 and 3, and expected profits can easily be
calculated for all the Hospitals and HMOs with equations 4 and 5.

4.2 Stage 3: HMO Premiums

At this stage, a set of transfers T and network structure χ is specified.
In order to calculate a NE in premiums, we first calculate the best-response function for an

HMO k given every other HMO has set premiums P−k. Note we can re-express HMO profits as:

πMk = NσMk (pk − cMk −
∑
j∈Hm

Tj,kσ
H
j,k)

= N

(∑
r∈R

σRr
Λk,r
∆r

)
(pk − cMk −

∑
j∈Hm

Tj,kσ
H
j,k)

where

Λk,r = exp(θMk β
M
r − αpk + γ ln(

∑
j∈Hk

exp(θHj β
H
r )))

∆r = 1 +
∑
l∈M

(exp(θMl β
M
r − αpl + γ ln(

∑
g∈Hk

exp(θHg β
H
r ))))

Note only Λk,r, ∆r and pk are dependent on the choice of pk.
Given the other HMO premiums, the optimal premium p∗k for HMO k maximizes πMk . Assuming

necessary second order conditions hold, this is equivalent to solving the following

0 =
∂πMk (T, χ, p∗k, P−k)

∂pk

=
∂σMk
∂pk

(p∗k − cMk −
∑
j∈Hm

Tj,kσ
H
j,k) + σMk (6)

where

∂σMk
∂pk

=
∑
r∈R

σRr
∂σ̃Mk,r
∂pk

=
∑
r∈R

σRr
∂

Λk,r

∆r

∂pk
=
∑
r∈R

σRr
Λk,r(Λk,r −∆r)

∆2
r

since
∂∆r

∂pk
= −Λk,r

Consequently, we define the best response premium function for HMO k as BRk(p−k) = p∗k as
defined in the equation 6.

Implementation

Since the best response function is not analytically invertible, we can still numerically approximate
what it would be.3 Thus, starting with an initial vector of premiums charged by the HMOs, we

3Given p−k, we plug the vector (pk, p−k) into equation 6 starting with pk = 0. Since HMO profits are increasing
in its own premium from pk = 0, this FOC will be positive for pk = 0. We then increase pk by a fixed amount (.01 in
the program) and keep doing so until equation 6 is negative. This is our approximation for pk = BR(p−k). Though it
is true that this value of pk may technically only be a local maximum for profits, it is unlikely that a different global
maximum exists.
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update each HMO’s premium to be a best response to the other HMOs. We iterate until a fixed
point is found. This vector p∗ is a NE in the premium setting stage.

4.3 Stage 2: HMO Choices

At this stage, hospitals will have offered the set of per-patient transfers T ≡ {T1, . . . , TH}.

4.3.1 Perfect Information Case

We start by assuming that all HMOs contract with all hospitals. We then allow the first HMO to
choose among all of its possible options (e.g., contracting with any subset of hospitals) holding the
other HMO actions fixed, and select its best response.4 We then move to the second HMO, and
repeat. We continue iterating, allowing each HMO in turn to make its best response to the current
iteration’s network structure, until we 1) converge to a fixed point or 2) cycle. If a fixed point is
found, it is a NE of this stage. If the process cycles, then we assume that no one contracts with
anyone (although this has not occurred in the 2x2 case).

4.3.2 Asymmetric Information Case

Assume that a particular HMO k has beliefs µ−k over χ−k, i.e. the network structures its competitor
hospitals will choose. Then, since this particular HMO k knows its own set of εk’s, it will choose
the appropriate χk ∈ S such that

χk ∈ arg max
χk

Eµ−k
[πMk (T, χk, χ−k)] (7)

∈ arg max
χk

 ∑
χ−k∈S−k

µ−k(χ−k)

∑
j

NσMk (χk, χ−k)[(pk − cMk )−
∑
j∈Hk

σHj,k(χk, χ−k)Tj,k]

+ χjεj

To HMO k’s competitors, since the distribution of εk is known, they can consequently construct
the distribution µk over S for any given µ−k by calculating the probability of HMO k realizing a
vector εk which induces a particular choice χk ∈ S. An equilibrium set of beliefs µ∗ is such that
µ∗k = µk(µ

∗
−k) ∀ k – i.e., the equilibrium beliefs µ∗k over which strategy hospital k will choose

coincide with the actual ex ante probabilities that hospital k will choose these strategies.
These equilibrium beliefs can be found via an iterative fixed point method – i.e., start with an

arbitrary set of beliefs µ0. For each HMO k, form µ1
k = µk(µ

0
−k). Let µ1 = {µ1

1, . . . , µ
1
M}, and keep

iterating until these beliefs converge: ||µn, µn+1|| < κ for some specified norm and tolerance κ.

4.4 Stage 1: Hospital Transfers

For any given set of transfers T , the procedure in Stage 2 should be able to generate either 1)
the network structure χ induced by T , or 2) equilibrium beliefs µ∗ over the space of possible χ’s.
Thus it becomes relatively straight forward to compute an hospital’s expected profits given a set

4Note that when it calculates the value of each of its options, a new network structure is implied and hence a new
set of premiums and induced demand will be computed. Hence, the nested nature of this approach.
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of transfers offered by all hospitals – in the asymmetric case it is as follows:

πHj (T ) = Eµ∗ [π
H
j (T, χ)]

=
∑
χ∈SM

µ∗(χ)

(∑
k

[NσMk σ
H
j,kTj,k]− cHj (

∑
k

NσMk σ
H
j,kTj,k

)

We proceed via an iterative best-response dynamic.

Implementation

We proceed by discretizing the space of allowable transfers per patient each hospital can make into
units τ .

Note that HMO k can spend pk/γ per patient before it starts to lose money on a particular
hospital contract. Thus, the highest per-patient transfers each hospital can make to a particular
HMO k be the value t̄k = Z̄kτ , where Z̄k ∈ Z+ is the largest integer such that Z̄kτ ≤ pk/γ. We
find the largest value of Z̄k of all k – which we call Z̄. Thus for each hospital j, we define the set
of strategies that it can use for each HMO k as A ≡ {0, 1, 2, . . . , Z̄} where the choice of zj,k ∈ A
determines Tj,k ≡ zj,kτ . 5

Given an arbitrary starting set of transfers T 0, a hospital j’s best response T ∗j (T 0
−j) can be

found by searching over all possible strategies ×jA, and determining which one yields the highest
profits for the given set T 0

−j .
6 Given this procedure for calculating any hospital j’s best response

to transfers T−j , we can keep cycling through hospitals and replacing the set of transfers with best
responses until we converge to a set of transfers where no hospital will wish to unilaterally deviate.
If such a set of transfers is found, it is a pure strategy NE.

This NE T ∗ along with the induced network structure χ(T ∗) and premiums p(T ∗, χ(T ∗) is a
SPNE of this game.

5 Parameters

We first focus on an example with 2 HMOs and 2 Hospitals. Units, unless otherwise specified, are
in thousands.

5.1 Demographic Characteristics

People are hospitalized with probability γ = .075. We assume that markets should be, in expecta-
tion over the aggregate, not over-capacity. Market size is distributed normally with a mean of 600,
standard deviation 300, and a minimum value of 100; thus, if the mean number of people enroll in
an HMO plan, 40 patients will need to be served.

There are three demographic groups, each of whose share of the overall population is found by
drawing a uniform random for each group, and then appropriately calculating the relative weights.
Each group’s preference for any particular hospital or HMO βr is drawn uniformly from the range
[.9, 1.1].

Disutility of premium prices α = 1.5.

5So far, this upper bound has not been reached with given parameter values; however, if it is ever reached as a
hospital’s out-of-equilibrium best response in the middle of a computation, the upper bound is automatically raised.
This is mainly a computational issue – since each time a hospital needs to determine its best response the entire
space of transfers much be searched, the smaller this space the faster the computation.

6We begin by assuming that starting transfers offered by each hospital T 0
j,k = zjτ ∀ k, where zj is the smallest

element in A such that zjτ > cHj .
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5.2 HMO Characteristics

HMO per-patient costs cMk are normally distributed with mean .75 and standard deviation .25.
HMO quality θMk is distributed normally with mean 2.5 and standard deviation .25. It is correlated
with costs by a value of ρM = .5.

5.3 Hospital Characteristics

Hospital quality θHj for each hospital are normals with mean µθH = 25 and standard deviation

σθH = .5. Hospital constant marginal costs c̄Hj are gaussian normals with mean µc̄H = 12 and
standard deviation µc̄H = 9, with a minimum of 1. Costs and hospital quality index for a particular
hospital j are correlated by a value of ρH = .5. For each pair, these variables are generated first
by creating two correlated standard normal random variables, and then appropriately transforming
them with the correct mean and standard deviation.

We assume that hospital capacity Γj is i.i.d. normal, with mean µΓ = 25 and standard deviation
σΓ = 10, with a minimum value of 1. Marginal costs increase exponentially in the number over
capacity by the value φ = 1.5.
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